

Uhde

Overview

- Introduction
 - Why think about energy consumption?
 - History of energy consumption figures
- Minimum realistic energy consumption of conventional processes
- Examples for energy saving measures
 - Minimization of heat release to the environment
 - Extended physical desorption for solvent regeneration in CO₂ removal
 - High efficiency energy conversion
 - Use of high efficiency turbo-machinery
 - Reduced pressure drop
- Comparison of consumption figures
- Summary

Introduction

Why think about energy consumption?

- Economical point of view:
 Natural gas is not a cheap by-product of oil production any more prices are increasing all over the world.
 - Many fertilizer plants already lost the ability to produce competitively due to rising energy cost
 - Value of energy savings increases with gas price
 - Example: energy saving of:
 corresponds to net present value:
 8.7 million USD

Conditions: plant size: 2,000 mtpd gas price: 3 USD / MMBTU

time horizon: 15 years interest rate: 5%

• Ecological point of view:

A considerable portion of the ammonia-production related CO₂ emission may at first be fixed in urea, but it will be released to the atmosphere upon urea decomposition

Introduction

History of energy consumption

- Energy consumption was significantly reduced in the 1970s
- No obvious trend since about 1990, consumption figures ranging in between of 6.7 and 7.4 Gcal/t NH₃

Stagnation due to low gas cost or for physical reasons?

Chemical baseline and reason for heat rejection

Input for NH₃ production from CH₄, air and steam: 4.98 Gcal/t_{NH3}
 (from reaction stoichiometry)

Energy in ammonia product (expressed as LHV):
 4.44 Gcal/t_{NH3}

- O Higher heat rejection in the real process due to process requirements:
 - selected temperature and pressure levels
 - energy recovery by steam cycle: limited efficiency
 - dissipational effects (friction)
 - overstoichiometric process steam

... and other

Analysis of actual energy flows

 Energy flows of actual modern ammonia plant – showing loss streams and areas for improvement | gas loss

Low Energy Consumption Ammonia Production 22 February 2011

Nitrogen+Syngas 2011, Dr. K. Noelker, Dr. J. Ruether

Analysis of actual energy flows

 Example from modern ammonia plant: 64 % of the energy consumption ends up in the product

- Approaches for reducing the energy consumption:
 - Reduce heat release from process ⇒ lower energy input
 - Increase efficiency of steam system ⇒ more value from waste heat
- O Practical limits:
 - Limitations for heat release from the process:
 - Loss to water coolers cannot be avoided because there is waste heat present at a low level not favourable for recovery
 - Reformer stack temperature preferred above 100 °C
 - Steam system: optimisation to 40 % efficiency assumed
- Result: baseline at approx. 6.5 Gcal per ton of ammonia
 - Lower consumption only with high efforts
 - Not identical to the economic optimum

Options for saving energy (1)

Minimised direct heat release to environment

- o e.g. flue gas at stack, synthesis waste heat to cooling water, ...
- o exemplary measures:
 - extended use of primary reformer flue gas heat to lower the stack temperature:
 - combustion air preheating
 - higher preheating temperatures of feed/steam and process air
 - optional: integration of a pre-reformer with re-heating in flue gas duct
 - ... all to utilize waste heat for process requirements
 - raise more HP steam and minimize heat loss to cooling systems:
 - 2 converter, 2 boiler synthesis loop
 - lower temperature difference in synthesis gas/gas heat exchanger

Options for saving energy (2)

Extended physical desorption in CO₂ removal unit

- Regeneration of solvent (here: aMDEA) is typically done with:
 - 2-stage physical desorption (HP/LP flash) for semi-lean solution
 - stripper column for lean solution
- Better regeneration by lower pressure possible, but:
 LP flash pressure optimized for CO₂ compressor suction pressure
- Insert atmospheric flash vessel below LP pressure for overall energy saving by:
 - lower solution circulation rate
 - lower reboiler duty
 - mechanical vapour compression

Options for saving energy (2)

Extended physical desorption in CO₂ removal unit

Low Energy Consumption Ammonia Production

22 February 2011

Nitrogen+Syngas 2011, Dr. K. Noelker, Dr. J. Ruether

Options for saving energy (3)

Optimum efficiency energy conversion

- Steam reforming process must release some waste heat
- Raising HP steam is a good option to utilize this heat for power generation (lower steam pressure means lower efficiency)
- Remaining power demand can be provided by:
 - enlargement of the steam cycle duty by:
 - cycle efficiency: ~30%
 - extra reformer firing
 steam from auxiliary boiler
 - combined cycle power plant (incl. gas turbine) serving the whole plant complex with steam and electric power:
 - cycle efficiency: >40% (up to 60% in large scale power plants)
 - energy saving:
 - advantage of 0.25 Gcal/t_{NH3} in exemplary NH₃ plant (due to changed energetic value of steam and power)
 - similar savings in the rest of the complex (urea and utilities)

Options for saving energy (4)

Use of energy-efficient machinery

Recent proposal data from reputable vendors (same project):

		Vendor 1	Vendor 2
Synthesis gas compressor turbine	HP steam inlet MP steam extr. Δ MP steam Δ consumption figure *1	250,400 kg/h 181,700 kg/h	250,400 kg/h 190,100 kg/h + 8,400 kg/h - 0.08 Gcal/t
Refrigeration compressor turbine	MP steam inlet Δ MP steam Δ consumption figure *1	34,900 kg/h	31,824 kg/h + 3,076 kg/h - 0.03 Gcal/t

^{*1:} MP steam rating: 3300 kJ(prim. energy) / kg(steam)

Selection of machinery is also a question of energy consumption

Options for saving energy (5)

Reduced pressure drop

- Pressure drop from outlet steam reformer to inlet synthesis gas compressor usually ranges from 6 to 9 bar
- Loss is to be compensated by synthesis gas compressor Example:

pressure drop of corresponds to about or to a net present value of ~600,000 USD

1 bar **0.007 Gcal/t_{NH3}** primary energy cons.

Conditions as on slide no. 3

- Effect on the overall consumption figure is small
- Consequently, it makes sense to find the optimum pressure drop with respect to total cost (capex + opex)

Comparison of consumption figures Checklist

- Energy consumption: important parameter to assess the economic value of a plant
- Just comparing numbers of energy consumption might be misleading because of:
 - Climatic conditions: lower energy consumption can be the consequence of lower ambient temperature, not of a "better" process
 - Selection of boundary: for different projects, the boundary can be selected differently – recommendation: include
 - condensate stripper
 - BFW pump power
 - refrigeration power for process
 - Credits for import / export streams: sometimes handled differently
 See paper for more examples

Summary

- Energy consumption of a typical modern plant is already rather low:
 - >60% of energy consumption converted into product
 - losses difficult to reduce
- Some potential in:
 - minimization of heat losses (e.g. reformer flue gas heat)
 - extended physical desorption in CO₂ removal unit
 - high efficiency supply of mechanical power (combined cycle for producing steam and electric power)
 - efficiency of machineryetc. ...
- Be suspicious in case very low consumption figures are stated without obvious process improvements
 - is the balance correct? (boundary, valuation of import / export, ...)
- Lowest energy consumption is <u>not</u> the economical optimum: consider capex + opex

Thank you for your attention!

Questions?

klaus.noelker@thyssenkrupp.com

