

Autothermal reforming: a flexible syngas route with future potential

Dr. Klaus Noelker, Dr. Joachim Johanning, Uhde GmbH

Nitrogen + Syngas Conference, Bahrain 1 – 3 March 2010

Synthesis gas and its generation

- Gas mixture of H₂ and CO
- Basis for important processes such as synthesis of ammonia, methanol, ...
- Syngas generation:

ThyssenKrupp

Synthesis gas and its generation

Main chemical reactions for synthesis gas generation by autothermal reforming of CH₄:

○ Steam reforming of CH₄:

$$CH_4 + H_2O \rightarrow CO + 3 H_2$$
 $\Delta H_R = +206 \text{ kJ/mol}$ endothermal

$$\Delta H_R = +206 \text{ kJ/mol}$$

O Partial oxidation:

$$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$$
 $\Delta H_R = -35 \text{ kJ/mol}$

$$\Delta H_R = -35 \text{ kJ/mo}$$

exothermal

Synthesis gas composition

Synthesis gas composition requirements (outlet reformer):

 $(H_2 + CO) / N_2 \approx 3.0$ ammonia:

 $(H_2 - CO_2) / (CO + CO_2) \approx 2.0$ methanol:

hydrogen: $H_2 = max$.

○ gas to liquids: $H_2 / CO \approx 2.0$

Composition ranges provided:

Uhde

ThyssenKrupp

Application of autothermal reforming

Autothermal reforming already established for syngas production:

- stand-alone ATR for GTL plants
- ATR combined with conventional tubular primary reformer for NH₃ and methanol plants:
 - NH₃: ATR used as secondary reformer on pre-reformed gas
 - methanol: mixture of pre-reformed gas and natural gas

"mild" conditions by:

- high steam ratio
- H₂ at inlet
- ⇒ low risk of soot formation

Idea: use ATR as only reforming reactor, delete costly tubular

primary reformer.

Risk: soot formation in ATR with no pre-reformed gas

Research needed (especially experimental) prior to commercialisation

Flowsheet options for ATR based NH₃ plant

Different oxidator compositions possible

⇒ different flowsheets for syngas generation of an NH₃ plant possible

Oxidator		Oxygen demand	Nitrogen content compared to demand of NH ₃ synthesis
plain air (21 % O ₂)		defined by best	too high
enriched air		defined by heat demand of the reforming reaction	matching
pure O ₂			too low

Flowsheet options for ATR based NH₃ plant

Option 1: Plain air as oxidator

Gas composition: large N₂ surplus in syngas

Consequence: either cryogenic unit to remove N₂

or large purge gas stream

Size: largest flowrates and equipment sizes in front end

Flowsheet options for ATR based NH₃ plant

Option 2: Oxygen enriched air as oxidator

Gas composition: correct amount of N₂ for NH₃ synthesis

Consequence: need air separation unit

Size: medium

Flowsheet options for ATR based NH₃ plant

Option 3: Pure oxygen as oxidator

Gas composition: no N_2 in syngas

Consequence: N_2 to be added at the end of the front end (for

example by liquid nitrogen wash unit)

large air separation unit needed

Size: smallest flowrates and equipment sizes in front end

Flowsheet options for ATR based NH₃ plant

Economic comparison between 3 options

- Operating cost: Similar (similar energy consumption)
- Investment cost:

Option 3 (pure oxygen) seems to be most expensive:

- large air separation unit
- nitrogen wash unit

Economic comparison between steam reformer and ATR plant

Operating cost (energy consumption)

steam reformer ATR

basis

- ⇒ higher feed gas flow
- ⇒ higher energy demand for preheating
- lower loss from flue gas
- air separation

Overall:

+ 6 % cost for option "enriched air" + 10 % cost for option "pure oxygen"

Economic comparison between steam reformer and ATR plant

Investment cost

judgement difficult because no purely on ATR based NH₃ plant built so far

steam reformer ATR

basis

air separation

no steam reformer

biggest contributors

ATR similar to secondary reformer

liquid nitrogen wash unit (option "pure oxygen")

no H₂ recovery unit (option "pure oxygen")

Overall:

 $+/-??? \Rightarrow$ evaluation on next slide

Economic comparison between steam reformer and ATR plant

Investment cost

Most significant effect comes from cost relation of air separation and steam reformer

Uhde's ATR test facility – process flow diagram

Uhde's ATR test facility

- 2007 2009: Installation of test facility in Russia in an existing chemical complex – advantage: all utilities and manpower available
- O June 2009: first ignition

Highlights:

- Critical parameter: soot formation at low steam-to-carbon ratio of the feed gas
- Sampling nozzles for soot detection in quench water and in gas
- Analysis equipment for soot detection with detection limit at 1 to 3 ppm
- When soot formation detected: change operating conditions to sootfree in order to get the soot again out of the system.

Test programme for the ATR

Outlet gas requirements:

○ composition (e.g. $[CO + H_2] / N_2 \approx 3.0$ or $H_2 : CO \approx 2.0$; no soot)

Design parameters:

- combustion zone geometry, nozzles etc. o steam-to-carbon ratio
- o combustion zone gas residence time
- inlet velocity feed/steam mixture
- o inlet velocity oxidator
- space velocity catalyst bed

Operating parameters:

- combustion zone temperature (by oxygen-to-carbon ratio)
- oxidator composition

Can be varied by operation of the test facility

Target of the optimisation:

- highest CH₄ conversion
- minimum oxygen consumption

Test programme for the ATR

Variation of parameters:

Parameter	Unit	Lower limit	Upper limit
feedstock higher hydrocarbon content	%	2	14
N ₂ content oxidator	%	0	55
operating pressure	bar	20	30
steam-to-carbon ratio	_	0.5	3.0
combustion zone shape	_	А	В
rel. gas residence time comb. zone	%	50	100
combustion zone temperature	°C	1150	1250

Operational results from the ATR test facility (1)

Operation without cataly	Operating point			
		Α	В	С
Parameter	Unit	NH ₃ syngas, enriched air	NH ₃ syngas, pure oxygen	FT syngas
Feed CH ₄ content	% mole	89.2	82.9	88.7
Feed C ₂₊ content	% mole	7.1	14.5	7.4
Oxidator N ₂ content	% mole	42.1	5.0	5.0
Steam-to-carbon ratio	_	3.0	2.0	0.7
Outlet temp. ox. zone	°C	1200	1250	1238
Oxygen-to-carbon ratio	_	0.85	0.74	0.60
Syngas pressure	bar abs	28.0	28.0	28.0
Outlet temp. cat. zone	°C	1086		1100

Operational results from the ATR test facility (2)

Operation with catalyst,	p = 28 bar	Operating point		
		A	В	С
Parameter	Unit	NH ₃ syngas, enriched air	NH ₃ syngas, pure oxygen	FT syngas
Feed CH ₄ content	% mole	91.9	91.3	96.9
Feed C ₂₊ content	% mole	4.0	4.8	1.9
Oxidator N ₂ content	% mole	48.9	5.0	5.0
Steam-to-carbon ratio	_	2.7	3.0	0.62
Outlet temp. ox. zone	°C	1200	1200	1210
Oxygen-to-carbon ratio	_	0.76	0.71	0.68
Outlet temp. cat. zone	°C	920	908	1024
Outlet CH ₄ content	% mole	0.13	0.32	0.55

Summary

- Autothermal reformers well established in combination with other syngas generators like tubular reformers ("conventional concept")
- Cost advantage of conventional concept vs. stand-alone ATR shrinking at higher plant capacity
- Research work triggered by less experience with stand-alone ATR
- Uhde's test facility built and in operation
- Operating data used to identify best design and to tune the design tools for commercial applications
- Uhde will be ready to offer an ATR for NH₃ and other applications in the near future

Summary

Thank you for your attention!

Questions please!