

#### Introduction

#### Ammmonia Plant Capacity Increase

- Advantages of capacity increase compared to the erection of a new plant:
  - better adjustment to market growth and feedstock availability
  - lower overall investment
  - faster implementation
  - ⇒ much smaller risk

- Important aspects:
  - determine the most economical extra capacity
  - select the best revamp concept



#### Introduction

#### Scope of the Presentation

#### Investigation:

- based on existing old ammonia plant (capacity at the time of the investigation: 1665 mtpd)
- envisaged a 30 % expansion (500 mtpd)
- covered areas:
  - entire process plant
  - steam system
  - focus on the synthesis gas generation section

#### • Detailed comparison of three different expansion concepts:

- I. Upgrading of existing steam reformer / secondary reformer
- II. Secondary reformer operation with enriched air
- III.Autothermal reformer (ATR) parallel to existing syngas generation



#### **Basics of Capacity Increase**

**Economical Requirements** 

#### Three distinct ranges of capacity expansion:



utilization of built-in capacity reserves

⇒ no investment

debottlenecking of few units / items

⇒ low investment

substantial plant modification

⇒ high investment



# **Basics of Capacity Increase**

# **Technical Requirements**

| Requirement                     | Action                                                                                                                              |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Increased flowrates             | - compressor / driver improvement - larger cross sectional areas                                                                    |
| Transfer larger amounts of heat | <ul><li>larger heat transfer surfaces</li><li>better heat transfer coefficients</li><li>increased temperature differences</li></ul> |
| Maintain reaction conversions   | <ul><li>larger catalyst volumes</li><li>modified reaction temp. &amp; press.</li></ul>                                              |
| Sustain separation of species   | <ul><li>improved internals of separation units</li><li>better solvents (solubility / selectivity)</li></ul>                         |



#### **Reference Plant Flowsheet**



#### **Compared Process Concepts** Concept I: Expansion of Primary Reformer existing equipment / line new / modified auxiliary process equipment / line air compressor "Conventional concept" air process air compressor proc. air steam air preheater natural desulphusecondary primary prepregas heating heating cooling rization reformer reformer gas aux. gas steam **BFW BFW** cooling CO<sub>2</sub> ← aux. CO. aux. gas aux. gas steam removal cooling cooling synthesis gas CO<sub>2</sub> methagas gas LT shift **HT** shift cooling cooling nation removal BFW BFW **♦** CO₂ ◀ BFW



Concept II: Secondary Reformer Operation with Enriched Air





Concept III: New ATR parallel to Existing Syngas Generation





Concept III: New ATR parallel to Existing Syngas Generation





Ammonia Synthesis

existing equipment / line

new / modified equipment / line

# Ammonia synthesis expansion with Uhde dual-pressure concept:





Methods

- Mass and energy balances in Aspen Plus
- For process plant and steam system
- Equipment characteristics included in the process models:
  - pressure losses: function of flowrate
  - compressor heads / eff.: function of flowrate, speed
  - heat transfer: function of mean log. temperature diff.



Method



- Notes:
- 1) purge gas export is desired in this study because it is used in another plant
- 2) also including air separation unit where applicable



Method



- Notes:
- 1) purge gas export is desired in this study because it is used in another plant
- 2) also including air separation unit where applicable



Results

| Item                    | Unit                 | Process Concept |                      |              |
|-------------------------|----------------------|-----------------|----------------------|--------------|
|                         |                      |                 |                      | III          |
|                         |                      | Enlarged<br>SMR | SR with enriched air | Parallel ATR |
| Feed gas                | GJ/t NH <sub>3</sub> | 22.83           | 24.28                | 24.15        |
| Fuel gas                | GJ/t NH <sub>3</sub> | 13.28           | 11.94                | 11.78        |
| MP steam                | GJ/t NH <sub>3</sub> | 2.07            | 1.72                 | 1.58         |
| Electricity (converted) | GJ/t NH <sub>3</sub> | 0.98            | 1.16                 | 1.15         |
| Purge gas export        | GJ/t NH <sub>3</sub> | -1.73           | -1.79                | -1.74        |
| Overall                 | GJ/t NH <sub>3</sub> | 37.43           | 37.31                | 36.91        |

Result: ATR-based concept shows lowest overall energy consumption



#### **Investment Cost Evaluation**

Calculation of Capital Cost for Expansion Concepts

 Cost estimation for individual equipment items by scaling from reference data:

```
actual cost = reference cost \left[\frac{\text{actual capacity}}{\text{reference capacity}}\right]^{\text{exponent}}
```

- Factors applied for cost for engineering, piping, instrumentation etc.
- Entire erection cost for each expansion concept: sum of adjusted equipment cost
- Production loss caused by shutdown time for tie-ins:
  - Concept III: tie-ins only in cold piping
  - Concept II: new secondary reformer ⇒ need one week more
  - Concept I: difficult work at reformer box ⇒ need four weeks more



#### **Investment Cost Evaluation**

Results – Importance of Shutdown Time

| Item                                             | Unit        | Process Concept   |                      |              |
|--------------------------------------------------|-------------|-------------------|----------------------|--------------|
|                                                  |             |                   | I                    | III          |
|                                                  |             | Enlarged<br>SMR   | SR with enriched air | Parallel ATR |
| Erection cost (pro-<br>cess and steam sys.)      | million USD | 157.5             | 175.1                | 168.0        |
| Lost profit <sup>1)</sup> by add'l shutdown time | million USD | 15.7<br>(4 weeks) | 3.9<br>(1 week)      | 0.0          |
| Overall capital cost                             | million USD | 173.3             | 179.1                | 168.0        |

+ 3 % + 7 %

Note: 1) example: 400 USD/t sales price,

4 USD/MMBTU gas cost

Result: ATR-based concept is most attractive



# **Overall CAPEX / OPEX Comparison**

Method

#### **General aspects:**

- All expansion concepts have the same annual production
  - ⇒ specific production costs represent the economic ranking

Scenarios for cost evaluation:

annual interest rate:4 or 10 %

required payback period: 5 or 15 years

specific energy cost:1.0 or 4.00 USD/MMBTU (LHV)

operating days per year: 350



# **Overall CAPEX / OPEX Comparison**

Method

#### **OPEX Considerations:**

- Costs / credits included in the OPEX calculation for all streams across B.L.:
  - gas
  - steam
  - electric power

(same as for calculation of consumption figure)

- All other costs contributing to OPEX, e.g:
  - staff
  - maintenance
  - tax

assumed to be same for all concepts ⇒ therefore excluded



#### **Overall CAPEX / OPEX Comparison**

Resuling Specific Production Cost, based on CAPEX and OPEX

| Economic scenario |                  | Production cost for process concept |                 |                      |                 |
|-------------------|------------------|-------------------------------------|-----------------|----------------------|-----------------|
| Energy cost       | Annual           | Payback                             |                 | =                    | III             |
|                   | interest<br>rate | period                              | Enlarged<br>SMR | SR with enriched air | Parallel<br>ATR |
| USD/MMBTU         | %                | years                               | USD/t           | USD/t                | USD/t           |
| 1.0               | 4                | 15                                  | 128             | 129                  | 122             |
|                   | 10               | 5                                   | 307             | 309                  | 289             |
| 4.0               | 4                | 15                                  | 231             | 234                  | 226             |
|                   | 10               | 5                                   | 404             | 412                  | 394             |

**Result:** ATR-based concept shows lowest overall production cost, irrespective of energy cost, interest rate and payback period



#### CO<sub>2</sub> Production

#### Comparison

#### CO<sub>2</sub> emission:

- CO<sub>2</sub> containing streams emitted by the ammonia plant and its utilities:
  - flue gas from reformer stack (ISBL)
  - flue gas from boiler stack (OSBL)
  - vent from CO<sub>2</sub> removal unit

approx. 10 % CO<sub>2</sub>, ambient pressure

approx. 99.5 % CO<sub>2</sub>, 1.3 – 1.7 bar abs.: easily available for urea production



# CO<sub>2</sub> and Urea Production

Comparison

CO<sub>2</sub> and urea production after revamp at 2,180 t/d ammonia production:

| Stream                             | Unit                                  | Process Concept |              |              |
|------------------------------------|---------------------------------------|-----------------|--------------|--------------|
|                                    |                                       |                 | =            | III          |
|                                    |                                       | Enlarged        | SR with      | Parallel ATR |
|                                    |                                       | SMR             | enriched air |              |
| Total CO <sub>2</sub> generation   | t CO <sub>2</sub> / t NH <sub>3</sub> | 2.10            | 2.09         | 2.06         |
| CO <sub>2</sub> available for urea | t CO <sub>2</sub> / t NH <sub>3</sub> | 1.16            | 1.23         | 1.20         |
| Max. urea production               | t/d                                   | 3,449           | 3,667        | 3,650        |



**Result:** Concepts II and III offer more CO<sub>2</sub> to be used for urea, less CO<sub>2</sub> emission



#### **Summary**

- Investigation on economics of ammonia plant production increase
- Focus on synthesis gas generation three options compared
- NH<sub>3</sub> synthesis: same concept for applied to all cases
- Result: economic ranking between the concepts, based on CAPEX and OPEX data
- Conclusion:

A stand-alone ATR parallel to the existing syngas generation:

- is a very competitive alternative
- requires minimum interference with the existing plant
- is the superior solution if full implementation costs (shutdown time, risks) are taken into consideration
- makes more CO<sub>2</sub> available for urea production compared to conventional concept



Thank you for your attention!

**Questions?** 

**Comments?** 

Suggestions?

klaus.noelker@thyssenkrupp.com www.uhde.eu



