

Paper 5d:

4000 mtpd Ammonia plant based on proven technology

50th Annual Safety in Ammonia Plants and Related Facilities Symposium, The Fairmount Royal York, Toronto, Canada, September 26-29, 2005

- Optimizing Plant Economics
- Plant Concept for 4000 mtpd Ammonia
 - Static Equipment
 - Rotating Equipment
 - Piping
 - Arrangement
 - Cost
- Conclusion

Introduction

Optimizing Plant Economics

- improvement of energy efficiency
 - → to a large extent done up to about 10 years ago
- o plant relocation towards low-cost natural gas sites
 - → in progress almost no new plants at high cost sites
- capacity scale up aiming at "economy of scale"
 - → persistent trend, expected to dominate the future

4000 mtpd Ammonia Plant Concept

Overview

- checked capacity: 4250 mtpd
- based on SAFCO IV concept (Uhde Dual Pressure Process)

Static Equipment

Reforming Section (1)

- Primary Reformer
 - modular design
 - tube & burner groups remain unchanged
 - ⇒ easy scale-up
 - cold outlet manifold ok

QAFCO 4 SAFCO IV plant study 2000 mtpd 3300 mtpd 4250 mtpd 288 tubes 408 tubes 540 tubes

Convection Bank

- API / ASME compliant design
- well proven in refinery service

Secondary Reformer

- similar to much larger ATRs
 (diameters of up to 8 m, i.e. 26.2 ft)
- small span of refractory arch

Reformed Gas Waste Heat Boiler

- limited at 3800 mtpd
- dual flow design
 with references for single boilers

Static Equipment

Gas Conditioning

- CO₂ Removal (BASF's aMDEA Process)
 - well proven process
 - large columns, however, no problems during SAFCO IV erection
 - slightly prorated diameters (plus 13%)
 - similar dimensions currently being specified and built for acid gas removal units of LNG plants

logistics only for site locations close to the sea

Static Equipment

Ammonia Synthesis

Ammonia Converters

 Once Through Converter with references for operating conditions and dimensions in AMV plants e.g.: Terra Courtright (former CIL), Zhong Yuan Chem. Fert. Puyang

- only slight prorating for loop converters
- no significant technological risk

Synthesis Gas Waste Heat Boilers

- nitriding and embrittlement of the tube sheet may in principle become an issue at large capacities ...
- however, conventional design for 4250 mtpd is fully feasible

Natural Gas Compressor Train

design depends on feed gas conditions

typical (feed gas pressure: 20 bar)

barrel type compressor

- 6 impellers

- 5.4 MW @ 10500 rpm

references exist e.g. in pipeline service

feasible concept

Rotating Equipment

Process Air Compressor Train

 compressor dimensions considerable, however, relatively small train when compared to process concepts using autothermal reforming or excess air

• option 1: constant number of casings

2-casing train without reference for flow and casing size respectively, however still feasible

horizontally split compressor
 SAFCO IV:

- 2/2 // 3/3 impellers 2/2 // 2/4 impellers

- 31 MW @ 4500 // 9000 rpm 25 MW @ 5135 // 8657 rpm

option 2: constant casing size

3-casing train with references for each casing

- 33 MW @ 4600 // 7300 rpm

feasible concepts available

Rotating Equipment

Synthesis Gas Compressor Train

operating conditions unique to NH₃ service
 => no references at 4250 mtpd

relatively small duty due to Uhde Dual Pressure Process

QAFCO 4 SAFCO IV

(2000 mtpd, conv. process) (3300 mtpd, dual pressure process)

5/4 // 8/1 impellers 4/4 // 6/1 impellers

27.3 MW @ 9535 rpm 28.6 MW @ 9700 rpm

feasible concepts of different manufacturers
 4/4 // 7/1 impellers
 38 MW @ 9000 rpm

- single flow steam turbine feasible,
 dual flow design may be preferable for reference reasons
- o feasible concepts available

Rotating Equipment

Refrigeration Compressor Train

- o ammonia refrigeration is customary technology
- scale-up is not expected to be critical
- expectation confirmed by feasible vendor concepts

feasible concepts available

- 600# and 900# (typical front-end)
 - backed by ASME code
 - reasonable scale up
- 1500# (typical once through synth.)
 - backed by ASME code
- 2500# (typical synthesis loop)
 - already off standard at 2000 mtpd and below
 - size reduction due toDual Pressure Process
 - fully feasible

Plant Arrangement

- o plot space for an 4250 MTPD ammonia plant is expected to be
 - about 140% that of 3300 MTPD
 - only 77% that of 2x 2000 MTPD

dimensions of pipe racks and compressor house checked - not an issue

Cost

- capital expenditure
 - specific cost (cost per mtpd installed) of a 4000 mtpd plant is expected to be only 86% of a 2000 mtpd plant
 - further cost reduction on owners side
 (for example due to reduced plot space requirements)
- operating expenditure
 - Dual Pressure Process cuts gas cost by 4% due to lower energy consumption
 - further savings (e.g. personnel cost)

significant savings to be expected

Conclusion

- clear market demand for ammonia plants with very large capacities
- first next generation plant already under construction by Uhde
- Uhde's Dual Pressure Plant concept is fully viable for a capacity of 4250 mtpd (and shows potential for even larger capacities)
- 4250 mtpd plant represents only moderate upscale of the 3300 mtpd reference plant
- concept with best possible reference situation for a next generation ammonia plant
 - ⇒ safe and reliable operation
 - ⇒ safe investment
- "economy of scale" pays off
- 4250 mtpd ammonia plants are offered by Uhde on a lump-sum turn-key basis

