
Cement production is a complex process from blending various natural and synthetic materials through a 

high temperature process to clinker and cement. The cement industry took off into a digitized future probably 

a decade ago. Today there are various tools to compile data from sources and detectors in the plant and 

transfer numeric data to automated procedures for analyses and identification of factors to improve energy 
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management and maintaining quality of the final products. A new important tool will be automated 

isothermal calorimetry (polabCal) to assess clinker and cement reactivity online. 

For the first time Schwenk Cement, tkIS and Calmetrix linked reactivity data from polabCal data to QC data 

from automated quality control (polab AMT) and process data. The results confirm, within the first hour 

of a calorimetric measurement it is possible to characterize clinker reactivity accurately. The clustering and 

correlation analyses identifies quality drivers and the interface of process data facilitates corrections during 

production. The integration of isothermal calorimetry and digitalization in process control opens new ways 

to maintain clinker and cement quality at desired targets.
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mate task of a digital optimization of economic and 
ecologic key parameters and the production of con-
sistent quality with a sustainable process over time.

One target is a reduced clinker content of ce-
ments while keeping the performance of the cements 
at a given level to fulfill market requirements. This 
requires a better understanding of clinker and ce-
ment reactivity beyond chemistry and mineralogy 
and particle size. In the past reactivity has hardly 
been assessed due to the limitation of time consum-
ing physical analyses. Reactivity of clinker and ce-
ment has been anticipated from chemical and min-
eralogical data and fineness data during production. 
Today the first actual available reactivity measure-
ment is one-day compressive strength. This strength 
value is delayed from clinker and cement production 
in the order of > 48h (from daily composite sample). 
The intermediate storage of raw materials in the kiln 
feed silo and clinker in the clinker silo complicates 
tracking compressive strength and reactivity back to 
process conditions during clinker production. 

A very recent development introduced iso-
thermal calorimetry into lab automation systems. 
Automated isothermal calorimetry (polabCal) is able 
to serve with reactivity data on pace with process 
control data [1, 2]. Isothermal calorimetric data is 
well accepted to indicate early strength development 
of cements [3, 4]. The new approach to estimate 
compressive strength from isothermal calorimetry 
is fast – accurate and more focused to compressive 
strength development than any other indirect signal 
from a QC lab in cement plants (XRF, XRD). This does 
not reduce the importance of both XRF and XRD but 
polabCal closes the time-gap from process control to 
the physical lab.

In a pilot setup in the Karlstadt cement plant 
thyssenkrupp (BU cement, TCCT) and Calmetrix 
and Schwenk partnered for an industrial trial to 
understand the benefits of combining automated 
quality control (polab AMT), automated isothermal 
calorimetry (polabCal) and digitalization by merg-
ing all data in a single data array for data analyses 
using AI and neural networks (Figure 1). The target 
of this study was the identification of key drivers 
for clinker reactivity by exploiting a unique data set. 
The results facilitate optimization of cement reactiv-
ity during the ongoing clinker production process. 
Finally, AI software and their integration in cement 

1 Introduction
The cement industry faces complex challenges like 
greenhouse gas emissions reduction, to get access to 
limited natural resources and to manage a complex 
clinkering process with secondary raw materials and 
alternative fuels. This is overlain by the pressure to 
improve processes economically and ecologically 
simultaneously.

Automation and digitalization are ready to sup-
port cement manufacturers on this road. Artificial 
intelligence has become a focus area in any industry 
to improve economic and operational performance 
of plants based on actual and historic data and expe-
rience and knowledge. The complexity of signals and 
the huge amount of data exceeds human perception. 
Modern analytical tools for data analyses based on 
artificial intelligence (AI) are up to close the gap.

Neural networks and fast computing provide 
automated analyses of large data arrays in real time. 
Historical data is continuously updated with actual 
data to train and refine the models for future deci-
sions. The direct link of those tools to process control 
is the first step to autonomous cement plant opera-
tion. When actual observations from the process in-
dicate conditions not known to the model the soft-
ware will call for human support.

Data for artificial intelligence is collected from 
a vast number of detectors/sensors located in the 
plant. Quality control data in the plants QC lab can 
be considered one of those (Figure 1). The operation 
of machines and processes and other plant internal 
processes like procurement, spare parts and mainte-
nance can be adjusted to current and future demand 
and conditions in real time. This all follows the ulti-
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From process control to quality prediction: 
Artificial intelligence in clinkering process 
control

1 Schematic setup of 
an IQCnet AI control-
ler. Data is collected 
from various sources 
and linked to historical 
data and experience. 
Decisions are returned 
to the process and veri-
fied from the following 
analyses
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plant automation contributes to complex tasks like 
prediction of clinker reactivity and process control.

 
2 Karlstadt plant
The Schwenk plant in Karlstadt produces cement 
since 1877 (lead picture). The plant operates a ro-
tary kiln with a 4-stage cyclone preheater. Annual 
cement production capacity totals to 1 million t 
cement and special construction binders per year. 
The product portfolio includes 16 different cements 
ranging from CEM I to CEM III in various strength 
classes as well as 25 special binders for civil engi-
neering. The Karlstadt plant runs an own port which 
is used to land raw materials such as granulated 
blast furnace slag by ship and to expedite cements 
on the waterway.

Since 2001, the plant undertook a lot of efforts 
to increase the proportion of secondary fuels in 
clinker production. The secondary fuel rate exceeds 
90% (since 2014). This substitution rate is above the 
average fuel substitution rate of German cement 
plants. The main fuels are refuse derived fuel (RDF), 
scrap tires (entered at the kiln inlet), and mechani-
cally dewatered sewage sludge. Animal meal and 
thermal dried sewage sludge are burned at the main 
burner. In 2004, a dedicated sewage sludge dryer 
with a drying capacity of approximately 100000 t/a 
was built at the plant site. A heat exchanger in the 
clinker cooler provides the necessary heat to oper-
ate the dryer in a cost efficient manner. The sewage 
sludge is dried to a moisture content of <10% and 
pneumatically transported to the kiln burner [5]. 

Relative to fossil fuels, secondary fuels are of-
ten characterized by increased ash content. Sewage 
sludge has a very high ash content, averaging 41% 
ash (based on dried sewage sludge) [6]. Compared to 
raw meal, fuel ashes contain less calcium. The lime 

saturation factor (LSF) of the raw meal is corrected 
to compensate for fuel ash in order to maintain the 
clinker LSF at an appropriate target.

In addition, it must be noted that the fuel ash-
es also cause a significant calcium deficiency on a 
microscale during clinkering. On this microscale, 
phase equilibria between melt phase and newly 
formed solid phases are considerably disturbed. As 
a result, the chemical composition of the melt and 
the chemical composition of aluminate and ferrite 
phases in clinker is modulated. Both effects modify 
set and hardening characteristics of corresponding 
clinkers and cements. By means of heat flow calo-
rimetry, these changes can be detected and critical 
conditions can be avoided during production [7].

 
3 Data collection
3.1 Sample collection and quality data collection
The Karlstadt plant is equipped with a polab AMT 
system. The full scale lab automation system 
automatically collects all relevant materials from 
the plant and ships them by pneumatic transport to 
the laboratory. In the lab, samples are automatically 
prepared to pressed tablets for XRF and XRD analy-
ses and ground powders for isothermal calorimetry. 
The lab automation software AQC collects all rel-
evant chemical and mineralogical data and particle 
size data – usually based on an hourly schedule (this 
depends on the materials collected).

 
3.2 Sample preparation for isothermal calorimetry
PolabCal was operated in Karlstadt in an at-line 
mode. polabCal is ready for fully automated opera-
tion, however due to space constraints of the proto-
type it was not possible to hook up polabCal directly 
to the polab AMT. In total polabCal has been oper-
ated in Karlstadt for almost 24 months.

2 A set of calorimetric curves collected with polabCal. The big windows 
show the variation of the calorimetric curves prior to clustering. The 
insert outlines the initial peak and confirms the rapid feedback of calo-
rimetry to process conditions

3 A set of numeric parameters is extracted from the calorimetry curve. 
These parameters are partially predefined or can be adjusted depending 
on local requirements and experience
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3.3 Preparation of data set
For the analyses process and quality data including 
reactivity data from polabCal were compiled in a 
single data base. For convenience data was collected 
during distinct periods with varying QC targets. The 
evaluation of the data set was conducted offline at 
TCCT, Munich. In future a set of software packages 
is supplied to manage online training of neural net-
works and to get decisions proposed instantaneous-
ly. As the data processing is the key message of the 
current study this is described in a separate chapter 
and directly linked to the analyses.

 
4 Digital data analyses applying AI 
and neural networks
4.1 Digital data evaluation
The current study exploited data from 6 month 
periods. The data consists of almost 400 calori-
metric measurements and related process data and 
lab analyses results. To ensure comparability, time 
shifts between process parameters and the delayed 
analyses of the samples were corrected prior to data 
processing.

Figure 2 shows the thermal power curves of all 
measurements in the data set. The visual detectable 
spread from the graph indicates significant vari-
ation in reactivity which ultimately can be tracked 
back to clinker properties and kiln operation. The 
curves include the so-called initial peak which is 
hardly recorded in standard isothermal calorimetry 
(insert in Figure 2). The initial peak appears very 
early after water addition to the sample. It is widely 
accepted, that the energy release at this point can 
be attributed to free lime hydration, early C3A hy-
dration and early C3S hydration. The recording of 
the complete initial peak is possible as polabCal 
prepares the samples very fast in a temperature 
controlled environment. Therefore no thermal equi-
libration period inside the calorimeter is needed. Af-
ter roughly 30 minutes the approach of the dormant 
period is confirmed by the end of the initial heat 
release. After 5 hours, the main peak is seen – this 
is what is usually shown in isothermal calorimetry 
(Figure 2, main graph).

The current study focused on the initial peak 
within the first 60 minutes after water addition. If 
isothermal calorimetry is targeted to process con-
trol, the timescales of process control and calorim-
etry need to overlap. Information which can be ex-
tracted after a couple of hours from the main peak 
may be time-wise closer to data of the physical lab, 
but the delay to production is considerable and any 
correlation to the process would be difficult even 
with only 5 hours offset. For this reason, long term 
data from the calorimetric curves were not investi-
gated in detail.

Typical curves from isothermal calorimetry re-
cord the heat release over time. The application of 
numeric analytical systems like AI either require (a) 

4 Hinton diagram out-
lining the correlation of 
parameters. Bubble size 
indicates the degree of 
correlation. Blue bub-
bles indicate a positive 
correlation and orange 
bubbles indicate a 
negative correlation

Clinker powders for isothermal calorimetry were 
produced by the polab AMT system and dispatched 
to a sample transfer position. From this position the 
samples were transferred from the polab AMT to 
polabCal manually. From the handover of the pow-
der to polabCal, the complete downstream processing 
of the samples is fully automated, including sample 
dosing, water addition, mixing and transferring the 
capsules into the I-Cal Flex calorimeter (Calmetrix) as 
described by [1, 2]. All results from isothermal calo-
rimetry are stored in a data base/LIMS system.

In Karlstadt clinker was ground to powder with-
out sulfate addition. The lack of sulfate carrier leads 
to calorimetric patterns slightly different to what 
is expected from typical cement patterns. These 
changes were not critical for the evaluation of the 
curves. A common sample preparation procedure is 
prerequisite to avoid particle size effects on reactiv-
ity observations. 

At Karlstadt polabCal added distilled water to 
5-6 g of ground clinker to reach a water to cement 
ratio (W/C) of 0.5. Any possible deviation of the 
powder dosing to the vial is compensated by the 
automatic weight adaption of water dosing. The wa-
ter addition is programmable to adjust for different 
water demand. A high shear mixer system homog-
enizes the paste. Each sample is transferred rapidly 
and fully automated into the I-Cal Flex calorimeter 
(Calmetrix) for measurement. The complete con-
ditioned environment facilitated an instantaneous 
start of the measurement in the order of 2 minutes 
after water addition. 

In the course of the current project the samples 
remained in the calorimeter for a period of 24 hours 
and the cumulative heat as well as power were re-
corded every 10 seconds. Calorimetry data is re-
ported in power [mW/gclinker] (the power released 
at each time increment) and cumulative heat [J/
gclinker] (heat release over time) normalized to clinker 
weight.
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characteristic numerical values extracted from the 
curves values for numerical analyses or (b) a ch-
emometric analysis where properties of the sample 
are estimated by similarity relative to adjacent sam-
ples with known characteristics. In the current study 
features from calorimetry were converted to numer-
ical values (Figure 3). Figure 3 also confirms the high 
intensity and the sharp shape of the initial peak – all 
this is on a common time scale. The features ex-
tracted include e.g. the power and released heat at 
the first and second maximum of the thermal power 
curve, the slope and duration between observed 
minimum and second maximum. The correlation of 

those numbers to any other analytical result or pro-
cess data is organized by the so-called time stamp 
given by the polab System automatically. 

 
4.2 Correlation and cluster analysis
The correlations between clinker production process 
parameters, the chemical and mineralogical analy-
sis parameters and the features of the calorimeter 
curves were found in an automatic mode by calcu-
lating Pearson correlation coefficients. The graphi-
cal representation of the results used a Hinton dia-
gram (Figure 4, Figure 5). First, the Hinton diagram 
visualizes the correlation of individual parameters 

5 Detailed Hinton 
diagram showing all 
parameters. Blue bub-
bles indicate a positive 
correlation and orange 
bubbles indicate a 
negative correlation
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by showing the degree of correlation by a bubble 
size and second the slope of the correlation by color 
(blue for positive, orange for negative). The analy-
ses clearly indicate – this is following expectations 
– reactivity is highly correlated with chemical and 
mineralogical parameters.

The complex data set was further analyzed in a 
cluster analysis. In cluster analyses emerging pat-
terns of the data are grouped according shape and 
characteristic properties. In the current study the 
foci of analyses were chemical and mineralogical 
composition and the results were later compared to 
the output from calorimetric analyses. 

The heterogeneous data set requires preliminary 
processing to normalize numerical values for analy-
ses. All numerical values are converted to a standard 
zero mean value and normalized variance. The next 
step is the identification of principal components 
(PCA – principal component analyses) and a projec-
tion of the data to a lower dimensionality.

Processing the data with a clustering algorithm 
based on expectation maximization of a Gaussian 
mixture model, five (5) clusters were found suffi-
cient to describe all samples in the data set. Each 
cluster represents a group of clinker with distinct 
properties. The numerical variation for individual 
parameters for each cluster can be read from Fig-
ure 6. It has to be kept in mind, that the actual data 
integrates parameters like raw materials, applied 
technology and human actions based on experience 

and historical values into process control. In Karl-
stadt minor changes in clinker mineralogy are used 
to differentiate so-called standard clinker (group 2) 
from premium clinker (group 1). Each of those is 
stored in separate places for cement production. By 
doing so, information shown in Figure 6 is at least 
partially biased.

The discrimination between both groups is based 
on mineralogical parameters (from quantitative 
XRD). Clinker with a C3S-content in above 65 wt-% 
is added to clinker group 1 while clinker with C3S-
content <65 wt-% is added to clinker group 2. This 
definition of quality by analytical results leads to a 
biased categorization for clinker. Other parameters 
like C4AF and free lime follow. However, from clus-
ter analyses it became apparent, that within each 
clinker type subgroups with common properties can 
be discriminated (Figure 6; subgroups: 1a, 1b, 2a, 
2b, 2c). Some variations observed in Figure 6 can 
be directly related to biased clinker differentiation 
based on C3S. For instance, if clinker in group 1 
is characterized by a high C3S also parameters like 
SiO2, Silica Modulus (SM),and CaO are on the higher 
side. Vice versa these samples are low in Al2O3, C3A, 
the alumina modulus (AM) and free lime. The ox-
ide values clearly indicate if oxides like SiO2 rise in 
a normalized system, other oxides compensate by 
lowered content (Al2O3, C3A). Complex parameters 
like LSF remain close to average. The subgroup 1b 
of premium clinker is characterized by an increased 
content of potential volatile species like Cl, SO3 and 
the alkalis as well as alkali sulfate (arcanite) and 
a slightly increased free lime content. The group 2 
clinker is characterized by lower C3S and increased 
C2S. The overall increased LSF causes incomplete 
digestion of calcium and increased free lime. The 
increased alumina content in group 2 increases C3A 
concentration. This interesting observation is the ef-
fect of high alumina at given Fe2O3. The C4AF con-
tent decreases. This confirms a modified Al/Fe ratio 
in C4AF. 

Coming back to calorimetry the main question 
is: do clinker types and subgroups influence the 
calorimetric pattern of the clinker samples and can 
reactivity of clinker be predicted? Figure 7 and Fig-
ure 8 show the thermal power and cumulative heat 
release over time. In each graph for each subgroup 
solid lines represent the median of the cluster and 
the colored band represents the range from Q1 (low-
er 25%) to Q3 (upper 75%). Apparently, each cluster 
including the subgroups exhibits a significantly dif-
ferent reactivity behavior within the first 30 min-
utes and also within the first day (Figure 2; Figure 
7, Figure 8). The cluster 1a and 1b display less heat 
release at this early age (Figure 7). This observation 
can be linked to the low free lime and the low C3A 
content of the premium clinker (Figure 6). The high 
C3S-content has less effect on the initial peak. For 
the same reason, group 2 clinker has quite high heat 

6 Correlation matrix for 
various chemical and 
mineralogical para-
meters: Group 1 clinker 
with subgroup 1a and 
1b (premium qual-
ity) and group 2 with 
subgroups a-c (standard 
clinker)
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7 Color coded graph 
of power curves of all 
samples in the study 
showing median Q25 
and Q75 for each clus-
ter for initial peak and 
main peak. Everything 
which can be differen-
tiated after a couple 
of hours can also be 
read from the first 30 
minutes

8 Color coded graph 
cumulative heat curves 
of all samples in the 
study showing median 
Q1 (lower 25%) and 
Q3 (upper 75%) for 
each cluster for initial 
peak and main peak. 
Everything which can 
be differentiated after a 
couple of hours can also 
be read from the first 30 
minutes

flow rates within the first hour – obviously this is 
related to high C3A and high free lime concentra-
tions. Both compounds react fast with a consider-
able heat release.

An important learning from Figure 7 and Figure 8 
is the visibility of characteristic individual clusters 
within the first hour and within the first 20 hours. 
Each subgroup can be identified by a characteristic 
heat flow pattern in both graphs. Group 1 clinker 
has a rather late main peak – while the standard 
clinker is releasing heat early. This confirms, once 
characterized, identical clinker can be attributed to 
a certain cluster very fast. Further, once identified, 
from the correlation analyses all required measures 
to move a clinker from one to the other group can be 
applied by minor actions in the process. This makes 
it possible to perform fast and accurate control of 
clinker reactivity on pace with the process. Both 
graphs confirm, the calorimetric signal observed 
within 10-15 minutes after start of an isothermal 
calorimetry measurement already holds the com-
plete information for the reactivity at a later stage. 
It would be sufficient – assuming a polabCal calo-
rimeter is installed and a digital analysis is available 
– to collect the first hour of heat evolution from a 
sample to understand and predict clinker reactivity.

If many patterns contribute to the observations 
within each clinker group, the samples performing 
very well can be discriminated from those perform-
ing less well (for instance high vs low heat flow). 

Theses samples can be characterized very well and 
instantaneously in terms of their chemical, min-
eralogical composition and the process conditions 
during production. Once the key drivers for reactiv-
ity can be identified from the data set it becomes 
possible to interfere with the process by adjusting 
raw materials (on long scale) and fuels and additives 
(on short scale) to maintain the reactivity of clinker 
production strictly at a desired value or to modify 
reactivity to a certain value. This opens the field for 
a completely new strategy for kiln operation.

 
4.3 Artificial intelligence (AI) for process control
The complex relationship between process param-
eters and chemical and mineralogical parameters 
on resulting product quality make this process 
particularly suitable for AI based approaches. This 
will facilitate process control based on prediction to 
improve operation and maintain consistent quality 
from very early during the manufacturing process.

For demonstration purposes, an AI model based 
on artificial neural networks (ANN) has been de-
veloped which links the current process data and 
polabCal data. This model is able to predict clinker 
quality (Figure 9 and Figure 10). The process data 
and polabCal data from the historic dataset are pre-
processed and fed into the ANN-model. In an itera-
tive approach, the weights of the ANN are adapted 
using backpropagation algorithms to optimally pre-
dict product quality. In the current example clinker 
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quality is represented by four characteristic param-
eters (C3S, C2S, free lime, P2O5).

After a training process, the model can be ap-
plied to unknown data, e.g. live data from the plant. 
This is possible as the numeric data from polabCal is 
continuously transferred to the ANN model. Figure 9 
covers a range from 2-14 minutes after start of the 
analyses. The blue error bars indicate the predicted 
value for each parameter. The yellow line shows the 
result of the chemical and mineralogical analyses. 
Within 8 minutes the blue error bars of the data 
arrive at very small values, close to the line indicat-
ing the analytical result from the laboratory. Within 
the first 3-4 minutes of calorimetric analyses the 
power curve is sufficient to find the correlation of 
calorimetric data to process data. The predictions 
are accurate, however still afflicted with larger un-
certainties. After 15 minutes the model based on 
calorimetric data accurately predicts the quality 
parameters from calorimeter measurement (Figure 
9). On the other hand, if any deviation between 
the model and the actual analyses is found, the AI 
model starts to identify reasons for this deviation 
and the model will be updated to avoid reaching this 

situation in future. Any deviation from the targeted 
value would allow starting a reaction to correct back 
to target.

In a second step, the ANN model can be em-
ployed in combination with an optimization algo-
rithm. The optimization algorithm finds a set of 
process set-points including raw material mix and 
fuel mix. The AI works iteratively to predict an op-
timum operating point and recommends changes to 
move clinker quality towards a targeted value. Over 
time this leads to a less volatile product quality (i.e. 
clinker reactivity). Figure 10 compile the individ-
ual steps as described above.

 
5 Results and conclusion
This new approach by applying artificial intelli-
gence in process control is qualitatively and quan-
titatively a significant progress relative to what has 
been done in the past. Previously any reactivity 
of clinker and cement had to be anticipated from 
chemical or mineralogical information (XRF, XRD). 
This can often work, but sometimes the quality as-
sumption fails for reasons not obvious to the kiln 
operator or cement mill operator. polabCal serves 
with hard data and measured numbers to facilitate 
kiln production control based on clinker reactiv-
ity. The rapid reactivity measurement is the key to 
correlate and identify reactivity drivers during kiln 
operation. If other information like the cost of com-
ponents and process stability and process efficiency 
are included in the data analyses, the kiln operation 
can be controlled based on economical and material 
properties simultaneously to a level giving benefits 
in both sectors.

Clinker production has to allow for new fuels 
and raw materials, both impacting the chemical and 
mineralogical composition of clinker. For instance, 
fuel changes modify heat profiles, the length of 
the flame, the total mass in volatile cycles, coating 
and clogging – each of them contributing to clinker 
chemistry and clinker reactivity and the stability 
of the kiln process. The pressure of economics in 
clinker production drives the substitution of tradi-

9 Schematic work 
of an AI controller. 
Actual data is continu-
ously coming in. The fit 
between expected data 
and measured data be-
comes better with time. 
Any deviation from 
the targeted situation 
can be compensated 
by action by the plant 
operators

10 Schematic overview 
of the AI controller 
set-up
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tional fuels with secondary fuels while maintaining 
clinker quality. For both aspects required reaction 
times are short to avoid off-spec quality. The first 
reliable analyses (1day compressive strength) is 
available only after 48 hours. This is far from the 
production date. This can be solved by artificial in-
telligence (AI), which will be a central tool to keep 
clinker and cement production stable. Understand-
ing of complex process conditions and the finding 
of best solutions can hardly be made by humans 
without AI support.

Clinker production changed through the last 
decades from a standard sintering of raw materials 
mainly consisting of four oxides (CaO, SiO2, Al2O3, 
Fe2O3) with coal to a challenging process integrating 
multiple materials and fuels while maintain clinker 
quality. 20 years ago, it was realized that chemical 
analyses are not sufficient anymore. Cement pro-
ducers started to verify clinker and cement qual-
ity by quantitative XRD (Rietveld-Analyses). This 
considerably improved the understanding of pro-
cesses in kilns. However, still there are conditions 
in plant operation, when both XRF and XRD do not 
unambiguously indicate how the final product ce-
ment will perform. This time of uncertainty would 
be closed by automated calorimetry.

Two questions can be answered easily with a 
new approach based on isothermal calorimetry. 
Firstly, during clinker and cement production any 
deviation from targeted quality can be resolved and 
corrected almost instantaneously. Secondly in long 
term production planning the direct link from reac-
tivity data to high resolution chemical and mineral-
ogical data and process data with a time stamp and 
a single sample facilitate the identification of key 
drivers and their impact on reactivity from large 
data arrays. So more complex solutions can be found 
from the mathematical analyses. This new approach 
is based on two core components. An automated 
calorimeter polabCal which serves with rapid re-

activity data and numeric data from calorimetric 
curves and digital expertise to first link data from 
all relevant sources along the kiln or the cement 
mill and second to analyze this data with tools from 
artificial intelligence (AI) and neural networks.

Artificial intelligence can process multiple sig-
nals from the plant, relate them and find economic 
solutions (Figure 11). With these new tools it is pos-
sible for the very first time to optimize clinkering 
reactions focusing to targeted clinker reactivity. Our 
vision of the future of cement plants is that they will 
to a large extent – but probably not completely – be 
autonomous, which will overcome biased kiln and 
mill operations by humans, limited by their experi-
ence and beliefs.


