

Today's presenters

Denis Krude

CEO
CEO of tkUCE since 2016

More than 25 years of industry experience
18 years of electrolysis experience
With thyssenkrupp since 1998

Dr. Arno Pfannschmidt

CFO
CFO of tkUCE since 2014

More than 25 years of industry experience
7 years of electrolysis experience
With thyssenkrupp since 1993

Enabling the global energy transition

Electrolysis connects the renewable power sector with a wide range of industries and enables its decarbonization

Renewable Power

Renewable electricity is expected to be the primary energy source for all market segments

Green Hydrogen

- Electrolysis converts renewable power into Green Hydrogen
- Makes renewables usable in wide range of industries
- Replaces fossil based processes

Hydrogen Markets

 Hydrogen decarbonizes industry processes:

mobility, substitute natural gas, refineries, fertilizers, steel, chemicals, etc.

Green hydrogen driver & enabler

Climate & environmental protection

Growing renewable power sector at low cost

Appropriate legal frameworks

Strong growth outlook for the hydrogen market

The hydrogen economy has broad-based secular support for growth

Government Policy and Consumer Demand

Countries with announced
H₂ strategy represent c.80%¹
of global GDP

Cost and Availability of Renewable Energy

c.11%

Annual decline rate of renewable power prices between 2010 and 2020

Opportunity for Scalable Green H₂ Solutions

>28 giga-scale production projects announced by July 2021

Source: Hydrogen Council, Kearney Energy Transition Institute, Bloomberg Note: 1 Including the United States and European Union 2 Energy content of 1kg of hydrogen equal to 141.9 MJ (HHV) = 39.4 KWh

Possible hydrogen consumption by 2050 (TWh² p.a.)

c. €110 bn market in 2020F Large opportunities for electrolysis within existing hydrogen market

We are the Alkaline Water Electrolysis and Chlor-Alkali technology provider to customers globally

^{1.} De Nora shareholding structure – De Nora Family 63.1%, Snam 35.6%, Cordusio Fiduciary (Board Members and Management) 1.2%

Building on a world class global organization with a network close to customers

Experienced management with strong track record leading an... CFO CTO **Denis Krude Fulvio Federico** Dr. Arno **Pfannschmidt** Head of Head of Green Head of Service & Hydrogen Chlor-Alkali **Innovation Center** Dr. Christoph Dr. Roland Dr. Ulf Steffen Noeres Beckmann **Bäumer** Management structure Global headcount of more than 370 6 local organizations operating in regional markets Tokyo & Okayama Shanghai **Dortmund** Milan Melbourne¹ Houston

^{1.} Newly opened office, build-up ongoing

Select tkUCE Green hydrogen milestones timeline solidifies position as an industry leader

Carbon2Chem

tkUCE's Duisburg tk
demonstrator hydrogen plant
started operations, a green
world premiere

Air Products

tkUCE signed an exclusive strategic cooperation agreement for world-scale electrolysis plants to be developed in key regions NEOM¹

Air Products, ACWA Power and NEOM signed agreement for \$5 billion production facility in NEOM, tkUCE selected as electrolysis technology provider (650 t/day of hydrogen)

20 MW installation

tkUCE awarded supply contract by CF Industries to deliver a green hydrogen plant for the production of green ammonia

H₂Global green hydrogen initiative

tkUCE as founding member of Germany's initiative to support 500 MW electrolyzers outside the EU with \$1.1 billion of funding support H₂Giga

Expansion to 5 GW p.a. capacity: tkUCE represented in all three BMBF hydrogen lead projects²

^{1.} As reported in Air Products press release 2. H₂Giga, H₂Mare and TransHyDE as the three German Federal Ministry of Education and Research (BMBF) lead hydrogen projects

tkUCE's proven experience in Chlor-Alkali business provides a strong basis for AWE scale-up

Chlor-Alkali Electrolysis

Alkaline Water Electrolysis

Proven experience with over 600 projects & 200,000 electrolytic cell elements

Building on Chlor-Alkali experience to be #1 in AWE

Market Readiness

- Industrial-scale installations
- Proven quality supply chain

- Industrial-scale hydrogen plants
- Expand to 5GW supply chain

Product

- A technology leader for electrolysis
- Handling of hydrogen as a by-product

- Standardized AWE product with leading TCO¹
- · Hydrogen as the main product

Organization & Network

- Holistic life cycle services
- Global network with partners

- Successful service model
- Automation and digitalization

tkUCE's Alkaline Water Electrolyzers – designed for industrial-scale roll-out

Alkaline Water Electrolyzer (AWE)

QualityProven cell design

Longevity
High durability proven by
Chlor-Alkali

High Performance
Long-term technology
experience

Service
Global service network
with partners

Creating the global leader of Alkaline Water Electrolysis

Chlor-Alkali chemistry describes the process of splitting salt (NaCl) into Chlorine (Cl₂), Caustic Soda (NaOH) and Hydrogen (H₂)

